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When a grooved periodic profile cut in a crystalline surface relaxes through surface diffusion, flatter parts
appear at the top and bottom in the transient state which precedes complete smoothing. This has been attributed
to a tendency of successive steps of identical sign to draw closer to one another. This kind of kinetic interaction
is a consequence of the finite value of the interatomic distance, and is present even if no interaction between
steps is taken into account. We investigate this effect in a very simplified model, namely, a one-dimensional
profile with alternating pairs of up and down steps, where no annihilation of steps is allowed. The quantitative
effect is partly treated analytically.
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I. INTRODUCTION

The present work is devoted to a paradox which arise
a simplified model suggested by a much more complica
problem. The physical problem of interest is the evolution
a surface which initially consists of waves@1–5# made of
parallel steps~Fig. 1! ~the surface is below its roughenin
transition temperature, and a profile can be appropriately
scribed as an alternation of steps and terraces!. This evolu-
tion should eventually smooth out the surface, and this
plies that steps progressively disappear. We are intereste
the evolution of the profile before steps disappear@6,7#. Ex-
perimentally, there is evidence that flatter parts~‘‘pseudofac-
ets’’! initially form at the highest and lowest parts of th
profile @3–5#. This may be a result of the surface being m
cut @8–10#, but some analytic theories do predict such pse
ofacets@11,12#. The result of simulations@13–18# is not very
clear, but often indicates a tendency to faceting@15–18#. In
these simulations, steps of opposite sign are allowed to
nihilate, and it turns out that pseudofacets persist until
profile completely flattens. Several theoretical explanati
@19–22# have been given for this. Pseudofacet format
would be expected, for instance, if there were an attrac
interaction between steps of identical sign. However, attr
tive interactions are absent in most physical cases and al
the Monte Carlo simulations which show pseudofacet form
tion. We shall therefore use the same model as in those s
lations, and ignore elastic@24#, electrostatic@25,26#, and
other dynamical interactions between steps, except for
fact that they cannot cross because step crossing would
erate overhangs in the surface. Actually, not only step cro
ing, but mere step contact between steps, will be forbidde
the model, so that there is aninfinite contact repulsion.

In this model, which is the simplest possible one, pse
ofacet formation can be explained by a mechanism sugge
by Adamet al. @23#. In the present work, we investigate th
mechanism in a simple case by more analytic methods
those of Adamet al. Unfortunately, this work, like that of
1063-651X/2001/63~2!/026104~9!/$15.00 63 0261
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Adam et al., is restricted to a ‘‘~111!-dimensional’’ model,
i.e. when the surface is one dimensional, characterized@Fig.
1~b!# by the positions of its steps. In this model the rela
ation is achieved through diffusion: atoms detach from ste
diffuse on terraces, and stick at steps.

An essential point in the theory of Adamet al. is that the
contact repulsion energy has no effect at the beginning of
evolution. The effect of the contact interaction was inves
gated mainly at or near equilibrium@27,28#. Then thefree
energy of the step system, as a function of the average
tance l between steps, is found to contain anl-dependent
term which results from the contact repulsion in the ener
In real, (211)-dimensional surfaces, this term is propo
tional to 1/l 2 times the total step length@27,28#. This term of
the free energy, which results from the contact repulsion
ergy, is often called ‘‘entropic repulsion.’’ In 111 dimen-
sion it has another expression but is also present. Howe
we consider a freshly cut surface, where steps are well s
rated and do not touch one another. Thus, at the beginnin
the evolution, there is no contact interaction in the ener

FIG. 1. ~a! A groove cut in a surface and~b! its representation as
a groove along a one-dimensional profile.
©2001 The American Physical Society04-1
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and therefore no entropic repulsion in the free energy.
Since the energy of any allowed configuration of the o

dimensional model does not depend on the distances
tween steps, one might~erroneously! conclude that the two
steps have the same probability to become closer and fa
from one another, so that pseudofacets have no reaso
appear in our model. As will be seen, this argument would
correct only if steps were point particles, i.e., for a vanis
ingly small interatomic distance.

As argued by Adamet al. @23#, the consequence of th
nonvanishing interatomic distancea is the following. The
minimum allowed amount by which the distance betwe
two steps can change is 2a, because the change requires t
transfer of an atom from the upper~lower! step to the lower
~upper! step, so that the distance increases~decreases! by a at
both edges. Thus a variation of the distancel between two
steps by an amount 2a implies the transfer of an atom from
one step to the other, and the traveling distance is shorte
an amount 2a if the distance becomes shorter (l→ l 22a)
than if it becomes longer (l→ l 12a). When the distance is
shorter, the traveling atom has a lower probability to co
back to its starting point, so that the processl→ l 22a has a
higher probability than the processl→ l 12a.

Of course, all steps should be taken into account, and
effect disappears for a regular array of equidistant steps~an
equilibrium configuration!, but is present for a periodic pro
file, as demonstrated by Monte Carlo simulations@23#: if
diffusion kinetics is used, a blunting of the profile is o
served in the transient state~this does not happen with
evaporation-condensation kinetics!. Thus, in a realistic
model, the effect leads to pseudo-facet formation. How?
successive steps of the same sign attract each other
maximal slope of a periodic profile increases, and con
quently the top and bottom flatten. This provides a qual
tive explanation of pseudofacets. All quantitative calcu
tions were, until now, simulations.

The simulation performed by Adamet al. @23# does not
provide much insight into how the effect leads to pseu
ofacet formation. The present paper is an attempt to prov
this insight, at the cost of realism. Realism and insight in
present case are incompatible. Here we give an analytic
culation in an oversimplified toy model.

II. A TOY MODEL

The features of our model aim at a simplification of t
algebra. They are as follows.

~i! The model is 111 dimensional.
~ii ! The profile is constituted by alternatingpairs of down

steps andpairs of up steps~Fig. 2!. A pair is the smallest
possible group which gives rise to the phenomenon of in
est, namely, the distance between steps of identical sign
creases at short times, implying an increase of the dista
between steps of opposite sign, and the formation of pse
ofacets.

~iii ! The only allowed process is the exchange of ato
between two consecutive steps of identical sign. Excha
between steps of opposite sign is forbidden. This is not
pected to be important, since it does not modify the dista
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between steps of opposite sign and does not modify theav-
eragedistance between steps of identical sign. Creation
new terraces between two steps is also forbidden.

~iv! The interaction between any pair of steps of identi
sign and the neighboring steps is treated in a mean fi
approximation, just forbidding the distancel between both
steps to be larger than an upper boundNa, whereN is a
constant integer. Moreover, overhangs are forbidden, so
l>0. Actually the value 0 will also be forbidden, so that

a< l<Na. ~1!

The integerN is determined by the condition that, at infi
nite time, the average value^ l (`)& of l is equal to

^ l ~`!&5
N11

2
a, ~2!

since all values consistent with Eq.~1! have the same prob
ability.

~v! Step annihilation is forbidden. This condition simpl
fies the calculation, and also makes the paradox more s
ing. Suppose indeed that, initially, all distances betwe
steps have the same valuel 0. At infinite time, in a model
subject to condition~v!, the average value of the distanc
between steps should also bel 0, since all states have th
same probability. However, it will be shown that the distan
^ l (t)& between steps of identical sign initially decreases
fore it reaches a minimum and increases toward the va
^ l (`)&5 l 0.

The above defined toy model reduces to a system ofin-
dependent pairs of stepsof identical sign. The problem is
simply to calculate the probabilityP( l ;t) that, at timet, the
distance between both steps of a particular pair is equall.

Let two consecutive steps of identical sign be at dista
l at a particular time. We now calculate the probability p
unit time a1( l ) that the distance increases by the minimu
allowed amount, which is 2a. This probability can be written
as

a1~ l !5gp0~ l !, ~3!

where ~i! g is the probability per unit time that an atom
initially in 0 ~Fig. 2! detaches from the upper step and com
to the pointA defined byOA5a; and~ii ! p0( l ) is the prob-
ability that this atom initially atA, sticks to the lower step a
position B defined byAB5 l ~the lattice is assumed simpl

FIG. 2. The one-dimensional profile on a two-dimensional cr
tal when the height is just two layers. The scheme of the deta
ment of an atom from a step is also shown.
4-2
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UNEXPECTED TRANSIENT EFFECT PHYSICAL REVIEW E63 026104
cubic! without returning toO. The latter quantity was calcu
lated by Adamet al., but the result is rederived below for th
sake of completeness.

To reach the distanceAB5 l , the atom first has to reac
the distanceAB85 l 2a. This is done with probabilityp0( l
2a). Then, if the atom is inB8, its probability to reachB is
equal to 1 minus the probability to go back toO, which is
p0( l ) becauseOB85 l . Thus

p0~ l !5p0~ l 2a!@12p0~ l !#

or

p0~ l !5
p0~ l 2a!

p0~ l 2a!11
. ~4!

It is easily checked that the formula

p0~ l !5
a

l 1b
~5!

solves Eq.~4!. Since it can fit any initial condition, it is the
general solution. The correct initial condition is

p0~0!51, ~6!

which is fitted byb5a. Thus

p0~ l !5
a

l 1a
, ~7!

so that Eq.~3! yields

a1~ l !5
ga

l 1a
. ~8!

The probability per unit timea2( l ) that the distance de
creases by 2a can be calculated in an analogous way. In t
case, the atom has to detach from the lower step, whic
does in the time unit with a probabilityg which is assumed
to be the same as before. After detachment, the atom is
on the step edge, and must only diffuse by a distancl
22a to stick to the upper step. Thus Eq.~8! is to be replaced
by

a2~ l !5gp0~ l 22a!5
ga

l 2a
. ~9!

The above argument assumes the same detachment
ability per unit time upward and downward, i.e., n
Schwoebel effect@29,30#. It is easy to take the Schwoeb
effect into account. If the detachment probability fromO to
A is unchanged, a detached atom inA again has the probabil
ity p0( l 2a)5a/ l to reachB8. The probability that, having
reachedB8, it reachesB, is pdown( l )5p1( l )1p2( l ), where
p1( l )5q is the probability to go down and stick at once, a
p2( l ) is the probability to go first away from the step~by the
distancea), then to come back toB8, and eventually to stick
in B. The probability to go first away from the step is (
2q); the probability to come back toB8 is (12a/ l ), be-
cause the probabilitynot to come back isa/ l as given by Eq.
02610
s
it

w

ob-

~7!, and the probability to go down toB after coming back to
B8 is pdown( l ). Thus pdown( l )5q1(12q)(12a/
l )pdown( l ) or pdown( l )5@11(a/ l )(12q)/q#21, and the
probability that a detached atom inA sticks inB is

p0~ l !5
a

l
pdown~ l !5

a

l 1a~12q!/q
. ~10!

In the absence of the Schwoebel effect,q51/2, and Eq.~10!
coincides with Eq.~7!.

Since there is no interaction between steps, all allow
configurations have the same energy and the same prob
ity. The detailed balance principle implies

a1~ l 22a!5a2~ l !. ~11!

As noted by Adamet al. @23#, relations~8! and ~9! satisfy
this requirement. Relation~9! can even be deduced from Eq
~8! and the detailed balance principle.

III. PARADOX

According to Eqs.~8! and ~9!, the probability that the
distance between steps of identical sign becomes short
larger than the probability that it becomes longer. Therefo
if one starts from a given initial step distancel (0), the av-
erage distancêl (t)& between steps of identical sign mu
initially decrease at short timest.

This occurs even if the initial valuel (0) is smaller than or
equal to the equilibrium valuêl (`)& given by Eq.~2!. If
l (0)<^ l (`)&, then^ l (t)& has an initial decrease followed b
a minimum and an increase until the value given by Eq.~2!
is eventually reached.

This unexpected minimum is a paradox. It simulates
pseudofaceting observed in simulations on more reali
systems. The advantage of the present toy model is to s
plify its analysis, since the paradox is characterized by
function ^ l (t)& which can be compared with the value give
by Eq. ~2! at infinite time. Moreover, there is a hope
calculate this function analytically. This is the task of th
next sections.

IV. MASTER EQUATION

Since 2a is the minimum amount by which the distancel
between two steps of identical sign can change, the proba
ity P̃( l ,t) that the distance isl at time t satisfies the maste
equation

d

dt
P̃~ l ,t !5a1~ l 22a!P̃~ l 22a,t !

1a2~ l 12a!P̃~ l 12a,t !

2@a1~ l !1a2~ l !# P̃~ l ,t !. ~12!

In order to avoid uninteresting complications, it will b
assumed that the initial distancel (0) is an even number o
times the atomic distancea, so thatl /a52n is an even inte-
ger at any time, and the probabilityP̃( l ,t)5 P̃(2na,t)
5P(n,t)5Pn(t) vanishes ifn is not an integer. It follows
4-3
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ANNA CHAME AND JACQUES VILLAIN PHYSICAL REVIEW E 63 026104
that (N11) has to be replaced by (N12) in Eq.~2!, but this
modification is unimportant for largeN. Master equation~12!
now reads

d

dt
Pn~ t !5an21~Pn212Pn!1an~Pn112Pn!,

n52,3, . . . ,
N

2
21, ~13!

whereN is assumed to be even, the detailed balance rela
~11! has been used and the notation

an5a1~2na!5
g

2n1z
, n51,2, . . . ,

N

2
21 ~14!

has been introduced. The parameterz is equal to 1 in the
absence of any Schwoebel effect.

For n51, condition~1! imposes that Eq,~13! is replaced
by

d

dt
P1~ t !5a1~P22P1!, ~15!

which can be considered a particular case of Eq.~13! if one
defines

a050. ~16!

For n5N/2, the definition of the model impliesan50, so
that Eq.~13! is replaced by

d

dt
PN/2~ t !5aN/221~PN/2212PN/2!. ~17!

Master equations~13!, ~15!, and~17! are linear, and their
solution can be expanded along normal modes, i.e.,

Pn~ t !5(
k

gkfn
(k)e2vkt, ~18!

wherefn
(k) and 2vk designate the eigenvectors and eige

values of the ‘‘master matrix,’’ i.e.,

an21~fn21
(k) 2fn

(k)!1an~fn11
(k) 2fn

(k)!52vkfn
(k) ,

n51,2,3, . . . ,N/2. ~19!

The eigenvaluesvk can be arranged so thatvk is an increas-
ing function of the integerk.

The coefficient offn21
(k) in the equation of system~19!

whose right hand side is2vkfn
(k) , and that offn

(k) in the
equation whose right hand side is2vkfn21

(k) , are both equal
to the real quantityan21. In other words, the ‘‘master ma
trix’’ is Hermitian. This hermiticity, which is a result of the
detailed balance relations~11!, implies that the eigenvalue
2vk are real. It is easy to see that there is a solution of
~13! independent of time,

Pn~`!5g0fn
(0)52/N, ~20!
02610
n

-

.

which must be the long time limit ofPn(t). Since this is a
nonzero, finite limit, all valuesvk must be positive excep
one:v050.

We tried to solve the problem analytically, in analog
with the familiar casean5a1, independent ofn. This case
corresponds to the diffusion of a particle, whenfn

(k) desig-
nates the Fourier components of the probabilityPn . When
an depends onn through Eq.~14!, the calculation is much
more complicated. We only treated the ‘‘continuum limit’’ i
which P(n,t) and fn

(k) can be considered as continuo
functions ofn and the right hand sides of Eqs.~13!, ~15!, and
~17! can be replaced by the first term of their Taylor expa
sion. This is correct, as will be seen, ifN@1 and if the
quantitiesgke

2vkt are small for largevk . The result of the
calculation, which is given in the Appendixes, is that t
average distance between steps at timet is ^ l (t)&
52a^n(t)&, where

^ l ~ t !&
a

52^n~ t !&

5
N

2
2 (

k51

N/221 4~2n01z!J22/3@zk~n0!#E
zk(1)

zk(N/2)

dzJ1/3~z!

3vk
2@J22/3~vk!#

2

3expS 2
9vk

2

~N1z!3
gt D , ~21!

wheren0 is the initial value ofn5 l /(2a), andvk andzk(n)
are defined by

vk5
1

3 S vk

g D 1/2

~N1z!3/2 ~22!

and

zk~n!5
1

3 S vk

g D 1/2

~2n1z!3/2. ~23!

Equation~21! is in fact very complicated because the eige
valuesvk , defined by Eq.~19!, are difficult to calculate.

In the continuum limit, i.e., for smallvk ~or k) the eigen-
valuesvk are given by

J1/3~vk!5J1/3F1

3 S vk

g D 1/2

~N1z!3/2G50. ~24!

Using the approximation

Jn~z!5A 2

pz
sinS z1

p

4
2

np

2 D , ~25!

valid for largez, Eq. ~24! yields for k not too small,

1

3
vk5lk~N1z!3/25S vk

g D 1/2

~N1z!3/25kp2
p

12
. ~26!

According to this equation, the highest eigenfrequen
which corresponds tok5N/2, is proportional to 1/N and
4-4
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UNEXPECTED TRANSIENT EFFECT PHYSICAL REVIEW E63 026104
vanishes for largeN. This result is probably incorrect. Th
highest frequencies are of the order ofg, since this is the
order of magnitude of the largest coefficientsan . However,
most of these coefficients are of the order ofg/N, in agree-
ment with Eq.~26!. Note that formulas~24!–~26! hold only
for small vk as stated above.

Approximation ~24! is obviously good for long times
when Eq.~18! is dominated by small values ofvk . How-
ever, even for short times, formulas~21!–~24! are in good
agreement with the numerical solution of Eq.~13!, for the
discrete model, as shown by Fig. 3. This figure shows t
even when the initial distance between steps coincides
the equilibrium value, a minimum width is attained in th
transient state before the long time limit is reached. It
worth mentioning that for long times the numerical soluti
of the master equation and the results deduced from Eq.~21!
do not converge exactly to the same value: the numer
solution goes to 1/211/N, and the results of Eq.~21! ~for the
continuum limit, whereN@1) go to 1/2.

A comment is appropriate about the summation onk in
Eq. ~21!. In principle, the ‘‘master matrix’’ has onlyN ei-
genvaluesvk ~only N/2 if odd values ofl /a are discarded!,
while Eq. ~24! has an infinity of solutions. For largeN the
number of eigenvalues tends to infinity, and this discrepa
is not essential.

The results of calculations based on formulas~21! and
~24! are given on Fig. 4. The firstN/2 values ofvk have
been used in the summation onk in Eq. ~21!. We have
checked that the results do not change appreciably ifN ei-
genvalues are used~if odd values ofl /a are not discarded!.
The rootsvk of the Bessel functions have been found us
MATHEMATICA , and the other variables which depend onN,
g, n0 etc. been calculated as functions ofvk . The time evo-
lution of the reduced average distance^ l (t)&/(Na) between
steps of identical sign is shown forN532 and 60, for severa

FIG. 3. Reduced average distance^ l (t)&/(Na) between steps o
identical sign at a scaled timegt when the initial distance betwee
steps isNa/2. Full curve: as deduced from Eq.~21! for N532.
Dash-dotted curve: as deduced from Eq.~21! for N560. Dotted
curve: numerical solution of the master equation forN532. Dashed
curve: numerical solution of the master equation forN560.
02610
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initial conditions. The surface is prepared in such a way t
the steps do not touch each other. Thus there is no entr
repulsion at the beginning~far from equilibrium!. After some
time entropic repulsion sets in. Our model, in which st
annihilation is forbidden, shows this clearly through t
minimum of the distance between identical steps. Thus
attractive interaction does not survive this entropic repuls
after a certain time. For sufficiently long times all curves
to the equilibrium value 1/2. Obviously for smaller values
g, this happens later in time.

For N560 the transient effect persists for longer tim
than forN532. This indicates that, for greaterN, the effect
could be more important, since there is more time availa
for the smaller width to become stable, if for instance, an
hilation of steps is allowed, and if this new factor could tr
the system into a metastable state. To verify this hypothe
which is motivated by what is seen in simulations, a mo
realistic model for the periodic profile has to be used,
order to take into account the connection between step
opposite sign, and to allow the annihilation of these ste
when they become too close.

In the physical case, when there are many steps of
same sign in the sloping parts of the profile rather than
two steps, the effect will not vanish, as would be the case
a regular array of steps of the same sign. The effect w
survive due to the presence of steps of opposite sign at
hills and valleys of the profile~where the effect does no
exist!. What has been observed in the simulation of Ada
et al. @23#, with a (111)-dimensional, otherwise realistic
model, is that the distance between steps of identical s
decreases, so that the sloping parts become steeper
course, fluctuations of the distance between steps have
observed, but no step pairing, in contrast with the obser
tion made by Kandel and Weeks@32# in a very different
context~crystal growth!.

Very recently, Israeli and Kandel@22# considered what
happens in the evolution of a one-dimensional profile if

FIG. 4. Reduced average distance^ l (t)&/(Na) between steps of
identical sign at timet, as deduced from Eq.~21! for various values
of the initial distance between steps. The maximum distance iN
560.
4-5
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ANNA CHAME AND JACQUES VILLAIN PHYSICAL REVIEW E 63 026104
attractive interaction between steps of opposite sign ex
~this could be an elastic interaction or an effective attract
simulating the effect of step fluctuations!. The entropic re-
pulsion between identical neighbor steps was also con
ered. Israeli and Kandel found, in a scaling scenario, t
pseudofacets form at the top and bottom of the profile in
transient state, and that the step density is smaller nea
extrema, due to the faster annihilation process. Without
attractive interaction they found that the profile evolves w
cusps replacing the pseudofacets. Here the atomic distan
taken into account, and pseudofacets canalso appear in the
absence of a real attractive interaction.

APPENDIX A: EIGENVECTORS IN TERMS OF BESSEL
FUNCTIONS

The probability P̃( l ,t)5 P̃(2na,t)5Pn(t)5Pn(t), that
the distance between two steps at timet is l, satisfies the
master equation~13!. The quantity to be calculated iŝl & t
5^2na& t . Then

^ l & t

a
5 (

n51

N/2

2nPn~ t !. ~A1!

It will be assumed thatPn(t) do not change very much
whenn varies by 1. This is clearly reasonable for large v
ues ofn, so a necessary condition for this ‘‘continuous a
proximation’’ to be valid is thatN must be large.

In this ‘‘continuum limit,’’ Eq. ~13! reads

]

]t
P~x,t !5

]

]x Fa~x!
]P~x,t !

]x G , ~A2!

wherex varies continuously between 1 andN/2, and

a~x!5a1~2xa!5
g

2x1z
. ~A3!

In the continuum limit, expression~A1! reads

^ l & t

a
52E

1

N/2

xP~x,t !dx, ~A4!

while expansion~18! becomes

P~x,t !5(
k

gkfk~x!e2vkt, ~A5!

wherefk(x) andvk are defined by

d

dx Fa~x!
d

dx
fk~x!G52vkfk~x! ~1,x,N/2!

~A6!

and the boundary conditions

a1

d

dx
fk~1!52vkfk~1! ~A7!

and
02610
ts
n

d-
at
e
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aN/221

d

dx
fk~N/221!5vkfk~N/221!. ~A8!

Relations~A6!, ~A7!, and ~A8!, respectively, correspond
to Eqs.~13!, ~15!, and~17! in the continuum limit.

Introducing the function

J̃5a~x!fk~x!, ~A9!

one can write Eq.~A6! as

d2

dx2
J̃1

2

g
a~x!

d

dx
J̃1

2

g
a8~x!J̃1vka

21~x!J̃50,

~A10!

where use has been made of definition~A3!, which implies

a8~x!5
da~x!

dx
52

2

g
a2~x!. ~A11!

Introducing the variablezk(x) defined by Eq.~23! and

definingJ(zk(x))5J̃(x), formula ~A10! can be written as

z2
d2

dz2
J~z!1z

d

dz
J~z!1~z22n2!J~z!50, ~A12!

wheren52/3 andz5zk . This equation is a Bessel equatio
and its general solution is

fk~x!5ak

vk

2g
~2x1z!J22/3@lk~2x1z!3/2#

2dk

vk

2g
~2x1z!J2/3@lk~2x1z!3/2#, ~A13!

where

lk5
1

3 S vk

g D 1/2

. ~A14!

The derivative of Eq.~A13! can easily be calculated be
causeJn8(u)5dJn(u)/du satisfies the relation

uJn8~u!5nJn~u!2uJn11~u!52nJn~u!1uJn21~u!,
~A15!

which implies, for anyl and r, that

d

du
@unrJn~lur !#5lrunr 211rJn21~lur ! ~A16!

and

d

du
@unrJ2n~lur !#52rlunr 211rJ2n11~lur !.

~A17!

Using Eqs.~A16! and ~A17!, with nr 51 andu52x1z,
the derivative of Eq.~A13! is found to be
4-6
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d

dx
fk~x!52

1

2
akS vk

g D 3/2

~2x1z!3/2J1/3@lk~2x1z!3/2#

~A18!

2
1

2
dkS vk

g D 3/2

~2x1z!3/2J21/3@lk~2x1z!3/2#.

Inserting Eqs.~A13!, ~A3!, and~A18! into Eqs.~A7! and
~A8!, one obtains

akJ1/3@lk~21z!3/2#1dkJ21/3@lk~21z!3/2#

5akS vk

g D 1/2

~21z!1/2J22/3@lk~21z!3/2#

2dkS vk

g D 1/2

~21z!1/2J2/3@lk~21z!3/2#

~A19!

and

akJ1/3~vk!1dkJ21/3~vk!

52~N1z!1/2akS vk

g D 1/2

J22/3~vk!

1~N1z!1/2dkS vk

g D 1/2

J2/3~vk!. ~A20!

In Eq. ~A20!, N has been assumed large (N@z).

APPENDIX B: APPROXIMATIONS FOR SMALL
EIGENVALUES

If vk is small, J1/3 and J2/3 are small in Eq.~A19!. It
follows that

dk /ak.S vk

g D 1/2

~21z!1/2
J22/3@lk~21z!3/2#

J21/3@lk~21z!3/2#
. ~B1!

SinceJn(u)'un for smallu, it follows thatdk /ak!1. Thus,
Eq. ~A13! reduces to

fk~x!5ak

vk

2g
~2x1z!J22/3F1

3 S vk

g D 1/2

~2x1z!3/2G .
~B2!

Neglectingdk , Eq. ~A20! reduces to

J1/3~vk!52
3vk

N1z
J22/3~vk!. ~B3!

Assuming

vk

N1z
!1, ~B4!

Eq. ~B3! reduces toJ1/3(vk)50, which is Eq.~24!. It follows
from Eq. ~26! that condition~B4! is equivalent to
02610
k

N1z
!1. ~B5!

APPENDIX C: ORTHOGONALITY OF THE
EIGENVECTORS

The functionsfk were defined in Sec. IV as eigenvecto
of a Hermitian matrix, and therefore must be orthogonal. T
orthogonality relation can be written for largeN as

E
1

N/2

fk8~x!fk~x!dx5dk8k . ~C1!

In particular, the orthogonality betweenf0(x) andfk(x)
implies

E
1

N/2

fk~x!dx50. ~C2!

It is of interest to check that formula~B2!, valid for small
vk , satisfies these orthogonality relations. Using Eqs.~A16!
and ~B2!, relation~C2! reduces to

~N1z!1/2J1/3@lk~N1z!3/2#5~21z!1/2J1/3@lk~21z!3/2#.
~C3!

The left-hand side of Eq.~C3! vanishes because of con
dition ~24!, and the right hand side is small for smallvk .
Thus relation~C2! is approximately satisfied.

Relation~C1! reads

akak8S 9

2
lklk8D 2E

1

N/2

dx~2x1z!2

3J22/3@lk~2x1z!3/2#J22/3@lk8~2x1z!3/2#5dk8k ,

~C4!

which can alternatively be written as

27

4
~N1z!3akak8~lklk8!

2

3E
0

1

rdrJ22/3~rvk!J22/3~rvk8!5dk,k8 , ~C5!

where r 5@(2x1z)/(N1z)#3/2 and N@z51, while vk is
defined by Eq.~22!, which, together with Eq.~24! and~A15!,
implies

2J22/3~vk!13vkJ22/38 ~vk!50. ~C6!

The Bessel function has the property@31# that, if vk and
vk8 are solutions of Eq.~C6!, they satisfy the relation

E
0

1

rdrJ22/3~rvk!J22/3~rvk8!5
1

2
@J22/3~vk!#

2dk,k8 .

~C7!

For kÞk8, Eq. ~C5! follows from Eq. ~C7!. For k5k8,
insertion of Eq.~C7! into Eq. ~C5! yields
4-7
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ak5
31/2

21/2~ 3
2 lk!

2~N1z!3/2uJ22/3~vk!u
~C8!

Using expansion~A5!, Eq. ~A4! can be written as

^ l & t

a
52 (

k50

N/221

gke
2vktE

1

N/2

xfk~x!dx. ~C9!

Since all terms vanish at infinite time except the termk
50 which must go to Eq.~2!, i.e., toN/2 if N is large, Eq.
~C9! reads

^ l & t

a
5

N

2
1 (

k51

N/221

gke
2vktE

1

N/2

2xfk~x!dx. ~C10!

Now by using Eqs.~C2! and ~B2! the integral in expres-
sion ~C10! above becomes

E
1

N/2

2xfk~x!dx5
vk

2gE1

N/2

~2x1z!2ak

3J22/3F1

3 S vk

g D 1/2

~2x1z!3/2Gdx.

~C11!

Using definition~23! to change variables, one obtains

E
1

N/2

2xfk~x!dx5ak

3

2Ez(x51)

z(x5N/2)

zJ22/3~z!dz, ~C12!

which can be written, using Eq.~A16!, with r 5l51 and
n51/3, as

E
1

N/2

2xfk~x!dx5
3

2
akE

z(x51)

z(x5N/2)

dzz2/3
d

dz
@z1/3J1/3~z!#.

~C13!

If this is integrated by parts, it becomes

E
1

N/2

2xfk~x!dx5
3

2
akFzk~N/2!J1/3@zk~N/2!#

2zk~1!J1/3@zk~1!#

2
2

3Elk(21z)3/2

lk(N1z)3/2

dzJ1/3~z!G . ~C14!
lid

M

lg

02610
The first term between brackets vanishes because of Eq.~24!.
The second term is small. Thus

E
1

N/2

2xfk~x!dx52akE
lk(21z)3/2

vk
dzJ1/3~z!. ~C15!

Then, from Eq.~C10!,

^ l ~ t !&
a

5
N

2
2 (

k51

N/221

akgke
2vktE

lk(21z)3/2

vk
dzJ1/3~z!.

~C16!

Knowing P(x,0), the coefficientsgk can be obtained by
using Eq.~A5! and the orthogonality condition; then,

gk5E
1

N/2

dxfkP~x,0!. ~C17!

If the initial condition is P(x,t50)5d(x2x0), the coeffi-
cientsgk are given by

gk5fk~x0!5ak

vk

2g
~2x01z!J22/3@lk~2x01z!3/2#,

~C18!

where Eq.~B2! has been used.
Insertion of Eqs.~C8! and ~C18! into Eq. ~C16! yields

^ l ~ t !&
a

5
N

2
2 (

k51

N/221
vk

2g
~2x01z!

3J22/3@lk~2x01z!3/2#ak
2e2vktE

lk(21z)3/2

vk
dzJ1/3~z!

or

^ l ~ t !&
a

5
N

2
2 (

k51

N/221

4~2x01z!
J22/3@lk~2x01z!3/2#

3vk
2@J22/3~vk!#

2
e2vkt

3E
lk(21z)3/2

vk
dzJ1/3~z!, ~C19!

which reduces to Eq.~21!.
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