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Unexpected transient effect
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When a grooved periodic profile cut in a crystalline surface relaxes through surface diffusion, flatter parts
appear at the top and bottom in the transient state which precedes complete smoothing. This has been attributed
to a tendency of successive steps of identical sign to draw closer to one another. This kind of kinetic interaction
is a consequence of the finite value of the interatomic distance, and is present even if no interaction between
steps is taken into account. We investigate this effect in a very simplified model, namely, a one-dimensional
profile with alternating pairs of up and down steps, where no annihilation of steps is allowed. The quantitative
effect is partly treated analytically.
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[. INTRODUCTION Adam et al, is restricted to a {1+1)-dimensional” model,
i.e. when the surface is one dimensional, charactefizayl

The present work is devoted to a paradox which arises if(b)] by the positions of its steps. In this model the relax-
a simplified model suggested by a much more complicate@tion is achieved through diffusion: atoms detach from steps,
problem. The physical problem of interest is the evolution ofdiffuse on terraces, and stick at steps.
a surface which initially consists of wavé$—5] made of An essential point in the theory of Adaet al. is that the
parallel stepsFig. 1) (the surface is below its roughening contact repulsion energy has no effect at the beginning of the
transition temperature, and a profile can be appropriately deevolutlon._The effect of the c_qnt_act interaction was investi-
scribed as an alternation of steps and terfacHsis evolu- ~ 9ated mainly at or near equilibriuff27,28. Then thefree
tion should eventually smooth out the surface, and this im&nergy of the step system, as a function of the average dis-
plies that steps progressively disappear. We are interested {@ncel between steps, is found to contain kdependent
the evolution of the profile before steps disapp@af]. Ex-  term which resul'_[s from the contact repu!smn in t.he energy.
perimentally, there is evidence that flatter paffsseudofac- In real, (2+1)-dimensional surfaces, this term is propor-
ets”) initially form at the highest and lowest parts of the tional to 11% times the total step lengfl27,28. This term of
profile [3—5]. This may be a result of the surface being mis-the free energy, which results from the contact repulsion en-
cut[8—10], but some analytic theories do predict such pseuderdy, is often called “entropic repulsion.” In£1 dimen-
ofacetqll,lz‘ The result of Simu|ati0n§_3_la is not very sion it has another eXpreSSion but is also present. However,
Clear, but often indicates a tendency to faceﬁmg_la_ In we consider a fl’eShly cut surface, where StepS are well sepa-
these simulations, steps of opposite sign are allowed to arfatéd and do not touch one another. Thus, at the beginning of
nihilate, and it turns out that pseudofacets persist until théhe evolution, there is no contact interaction in the energy,
profile completely flattens. Several theoretical explanations
[19-22 have been given for this. Pseudofacet formation (a)
would be expected, for instance, if there were an attractive
interaction between steps of identical sign. However, attrac-
tive interactions are absent in most physical cases and also ir
the Monte Carlo simulations which show pseudofacet forma-
tion. We shall therefore use the same model as in those simu-
lations, and ignore elastif24], electrostatic[25,26, and
other dynamical interactions between steps, except for the
fact that they cannot cross because step crossing would gen(b)

erate overhangs in the surface. Actually, not only step cross-
ing, but mere step contact between steps, will be forbidden in “—|_|—,_|—,7
the model, so that there is anfinite contact repulsion —

In this model, which is the simplest possible one, pseud- l
ofacet formation can be explained by a mechanism suggestec
by Adamet al.[23]. In the present work, we investigate this
mechanism in a simple case by more analytic methods than FIG. 1. (a) A groove cut in a surface ar(®) its representation as

those of Adamet al. Unfortunately, this work, like that of a groove along a one-dimensional profile.
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and therefore no entropic repulsion in the free energy. Y
Since the energy of any allowed configuration of the one- |—'£|\’k |
dimensional model does not depend on the distances be-— - g — L

tween steps, one migfierroneously conclude that the two
steps have the same probability to become closer and farthe
from one another, so that pseudofacets have no reason t
appear in our model. As will be seen, this argument would be
correct only if steps were point particles, i.e., for a vanish- FIG. 2. The one-dimensional profile on a two-dimensional crys-
ingly small interatomic distance. tal when the height is just two layers. The scheme of the detach-
As argued by Adanet al. [23], the consequence of the ment of an atom from a step is also shown.
nonvanishing interatomic distanaeis the following. The
minimum allowed amount by which the distance betweerbetween steps of opposite sign and does not modifyathe
two steps can change ia2because the change requires theerage distance between steps of identical sign. Creation of
transfer of an atom from the uppdower) step to the lower new terraces between two steps is also forbidden.
(uppel step, so that the distance increag#screasesdy a at (iv) The interaction between any pair of steps of identical
both edges. Thus a variation of the distahdeetween two sign and the neighboring steps is treated in a mean field
steps by an amounta2implies the transfer of an atom from approximation, just forbidding the distantéetween both
one step to the other, and the traveling distance is shorter bsteps to be larger than an upper bouxd, whereN is a
an amount 2 if the distance becomes shortdr—|—2a) constant integer. Moreover, overhangs are forbidden, so that
than if it becomes longer -1+ 2a). When the distance is [=0. Actually the value 0 will also be forbidden, so that
shorter, the traveling atom has a lower probability to come
back to its starting point, so that the procéssl —2a has a as<|<Na. @
higher probability than the process-| + 2a.
Of course, all steps should be taken into account, and the The integem is determined by the condition that, at infi-

effect disappears for a regular array of equidistant staps nite time, the average valyé(=)) of | is equal to
equilibrium configuratioly but is present for a periodic pro-

file, as demonstrated by Monte Carlo simulatid28]: if N+ 1
diffusion kinetics is used, a blunting of the profile is ob- (I(oo)):Ta, 2
served in the transient statghis does not happen with
evaporation-condensation kineticsThus, in a realistic . )
model, the effect leads to pseudo-facet formation. How? Ifince all values consistent with E@.) have the same prob-
successive steps of the same sign attract each other, tR&Ility. o ) _ N o
quently the top and bottom flatten. This provides a qualitafies the calculation, and also makes the paradox more strik-
tive explanation of pseudofacets. All quantitative calcula-Ng. Suppose indeed that, initially, all distances between
tions were, until now, simulations. steps have the same vallg At infinite time, in a model
The simulation performed by Adarmet al. [23] does not SubjeCt to Conditior(V), the average value of the distance
provide much insight into how the effect leads to pseud-Petween steps should also bg since all states have the
ofacet formation. The present paper is an attempt to providéame probablllty However, it will be shown that the distance
this insight, at the cost of realism. Realism and insight in the! (t)) between steps of identical sign initially decreases be-
present case are incompatib]e_ Here we give an ana]ytic Caﬁore it reaches a minimum and increases toward the value

culation in an oversimplified toy model. (I())=lo.
The above defined toy model reduces to a systernm-of

dependent pairs of stepsf identical sign. The problem is
Il. ATOY MODEL simply to calculate the probabilitp(l;t) that, at timet, the
distance between both steps of a particular pair is equlal to
Let two consecutive steps of identical sign be at distance
| at a particular time. We now calculate the probability per
(ii) The profile is constituted by alternatipgirs of down unit time o (1) that .the-dlstange Increases by the mir_wimum
steps andpairs of up steps(Fig. 2. A pair is the smallest allowed amount, which is& This probability can be written

possible group which gives rise to the phenomenon of inter®S
est, namely, the distance between steps of identical sign de-

0 A B’B

The features of our model aim at a simplification of the
algebra. They are as follows.
(i) The model is #1 dimensional.

creases at short times, implying an increase of the distance a” (1)=ypo(l), (©)
between steps of opposite sign, and the formation of pseud-
ofacets. where (i) y is the probability per unit time that an atom

(iii) The only allowed process is the exchange of atomsnitially in O (Fig. 2) detaches from the upper step and comes
between two consecutive steps of identical sign. Exchangto the pointA defined byOA=a; and(ii) py(l) is the prob-
between steps of opposite sign is forbidden. This is not exability that this atom initially at, sticks to the lower step at
pected to be important, since it does not modify the distanceosition B defined byAB=1 (the lattice is assumed simple

026104-2



UNEXPECTED TRANSIENT EFFECT PHYSICAL REVIEW B3 026104

cubic without returning toO. The latter quantity was calcu- (7), and the probability to go down # after coming back to

lated by Adanet al, but the result is rederived below forthe B’ is  pgown(l).  Thus pgowr(l)=a+(1—q)(1—a/

sake of completeness. DPgown() OF Paown()=[1+(a/l)(1—q)/q]" %, and the
To reach the distanc&B=1, the atom first has to reach probability that a detached atom Msticks inB is

the distanceAB’' =|—a. This is done with probabilitypy(|

—a). Then, if the atom is iB’, its probability to reacB is po() = Ep ()= a (10)

equal to 1 minus the probability to go back @& which is 0 | Fdow I+a(l-q)/q"

po(l) becauseOB’=I. Thus
In the absence of the Schwoebel effept 1/2, and Eq(10)

pPo(l)=po(l —a)[1—po()] coincides with Eq(7).
Since there is no interaction between steps, all allowed
or configurations have the same energy and the same probabil-
ity. The detailed balance principle implies
() _Poll=a) “
Pl = b=y + 1° a*(I-2a)=a (). (1D
It is easily checked that the formula As noted by Adamet al. [23], relations(8) and (9) satisfy
this requirement. Relatio®) can even be deduced from Eq.
a (8) and the detailed balance principle.
Po(D)=1—% (5)
I+b
IIl. PARADOX

solves Eq.(4). Since it can fit any initial condition, it is the

general solution. The correct initial condition is According to Eqs.(8) and (9), the probability that the

distance between steps of identical sign becomes shorter is

Po(0)=1, (6) larger than the probability that it becomes longer. Therefore,
if one starts from a given initial step distanb@®), the av-
which is fitted byb=a. Thus erage distancél(t)) between steps of identical sign must
initially decrease at short times
po(1) = i, ) This occurs even if the initial valu€0) is smaller than or
I+a

equal to the equilibrium valuél(»)) given by Eq.(2). If
[(0)<(I(x)), then(l(t)) has an initial decrease followed by
a minimum and an increase until the value given by &j.
ya is eventually reached.
at(lh)= Ta (8) This unexpected minimum is a paradox. It simulates the
ta pseudofaceting observed in simulations on more realistic
systems. The advantage of the present toy model is to sim-
plify its analysis, since the paradox is characterized by the
nction{I(t)) which can be compared with the value given

so that Eq(3) yields

The probability per unit timex™(I) that the distance de-
creases by & can be calculated in an analogous way. In this
case, the atom has to detach from the lower step, which —— infinite ti M h ; h
does in the time unit with a probability which is assumed y EQ. (2) at infinite time. Moreover, there is a hope to
to be the same as before. After detachment, the atom is nOW:llculate'thls function analytically. This is the task of the
on the step edge, and must only diffuse by a distance next sections.
k:yZa to stick to the upper step. Thus E@) is to be replaced V. MASTER EQUATION
Since 2a is the minimum amount by which the distance
a ()= ypy(l —2a)= 7_a_ (99  between two steps of identical sign can change, the probabil-

I-a ity P(I,t) that the distance ibat timet satisfies the master
The above argument assumes the same detachment proq)quatlon

ability per unit time upward and downward, i.e., no d_ B

Schwoebel effecf29,30. It is easy to take the Schwoebel &P(I,t)=a*(l —2a)P(I—2a,t)

effect into account. If the detachment probability fr@nto

A is unchanged, a detached atonAimagain hgs the proba_bil— +a(I+2a)B(1+2a,t)

ity po(l—a)=a/l to reachB’. The probability that, having

reachedB’, it reachesB, is pyown(l) =pP1(l) +p2(l), where —[a™(H+a (H]P(,1). (12
p1(1)=q is the probability to go down and stick at once, and _ _ . o o
p(1) is the probability to go first away from the stépy the In order to avoid uninteresting complications, it will be

distancea), then to come back tB’, and eventually to stick assumed that the initial distant€) is an even number of
in B. The probability to go first away from the step is (1 times the atomic distancg so thatl/a=2n is an even inte-
—q); the probability to come back tB’ is (1—a/l), be- ger at any time, and the probabilitP(l,t)=P(2na)

cause the probabilitpotto come back is/| as given by Eq. =P(n,t)=P,(t) vanishes ifn is not an integer. It follows
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that (N+1) has to be replaced bN(+2) in Eq.(2), but this
modification is unimportant for largd. Master equatioi(12)
now reads

d
a Pa(t)=an_1(Pn_1—Pp)+an(Ph1—Pp),

n=23,... 51, (13

PHYSICAL REVIEW E 63 026104

which must be the long time limit oP,(t). Since this is a
nonzero, finite limit, all valuess, must be positive except
one: wy=0.

We tried to solve the problem analytically, in analogy
with the familiar casex,= a4, independent ofh. This case
corresponds to the diffusion of a particle, whefl desig-
nates the Fourier components of the probabikty. When
a, depends om through Eq.(14), the calculation is much
more complicated. We only treated the “continuum limit” in
which P(n,t) and q&ﬂ‘) can be considered as continuous

whereN is assumed to be even, the detailed balance relatiofnctions ofn and the right hand sides of Eq43), (15), and

(11) has been used and the notation

N
n=12,...——1 (14

Y
_ _
ap,=a" (2na) nig’ 5

has been introduced. The paramefeis equal to 1 in the

absence of any Schwoebel effect.

Forn=1, condition(1) imposes that Eq,13) is replaced

by

d
gi PV =au(P2=Py), (15

which can be considered a particular case of @§) if one
defines

a0=0. (16)

Forn=N/2, the definition of the model implieg,=0, so
that Eq.(13) is replaced by

d
aPle(t)Z anp—1(Pniz-1—Pnp)- (17)

Master equation§l3), (15), and(17) are linear, and their

solution can be expanded along normal modes, i.e.,

Pn<t>=§ yepPe o, (18)

(17) can be replaced by the first term of their Taylor expan-
sion. This is correct, as will be seen, M>1 and if the
quantitiesy,e~ ' are small for largew, . The result of the
calculation, which is given in the Appendixes, is that the
average distance between steps at tirheis (I(t))
=2a(n(t)), where

(1)

5~ &n()

2,(N/2)
Ni2—1 4(2ng+ 5)3—2/3[Zk(”o)]fz " dzJy5(2)
k'

2 &1

305[372/3(00]2

9v§
ex _(N+§)37t , (21

whereng is the initial value oh=1/(2a), andv, andz(n)

are defined by

1 1/2
vk=§(%) (N+)% (22

and

1/2
2(n)= %(%) (2n+0%2 23

Equation(21) is in fact very complicated because the eigen-

where ¢;” and — w designate the eigenvectors and €igen-ajyesqw, , defined by Eq(19), are difficult to calculate.

values of the “master matrix,” i.e.,
K K K K K
an-1( 1= W)+ an(d) 1~ d1) = — wi P,

n=123... N/2. (19

The eigenvalues) can be arranged so thaj, is an increas-

ing function of the integek.
The coefficient of¢(, in the equation of systerfi9)

whose right hand side is- w,¢, and that of${ in the

n

In the continuum limit, i.e., for smalb, (or k) the eigen-

valueswy are given by

Jus(v) =J13

1 1/2
§<%) (N+ 5)3’2} —0. (24
Using the approximation

2 T VT
J,(2)= Esm Z+Z—7,

(25

equation whose right hand side-isw, ¢, , are both equal
to the real quantityr,_;. In other words, the “master ma- valid for largez, Eq. (24) yields fork not too small,

trix” is Hermitian. This hermiticity, which is a result of the

detailed balance relatiord1), implies that the eigenvalues o | @K\ o ’7T

—wy are real. It is easy to see that there is a solution of Eq. §Uk:)‘k(N+§) = 3 (N+7) =k77—1—2. (26)

(13) independent of time,

) According to this equation, the highest eigenfrequency,
Pn(®)=vo¢n ' =2IN, (200 which corresponds t&=N/2, is proportional to M and
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FIG. 3. Reduced average distan¢tét))/(Na) between steps of
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FIG. 4. Reduced average distar{tét))/(Na) between steps of

identical sign at a scaled timgt when the initial distance between identical sign at time, as deduced from E¢21) for various values

steps isNa/2. Full curve: as deduced from E{R1) for N=32.

Dash-dotted curve: as deduced from E®l) for N=60. Dotted
curve: numerical solution of the master equationMer 32. Dashed
curve: numerical solution of the master equation Ko 60.

vanishes for largeéN. This result is probably incorrect. The

highest frequencies are of the order gf since this is the
order of magnitude of the largest coefficiets. However,

most of these coefficients are of the orderéN, in agree-
ment with Eq.(26). Note that formulag24)—(26) hold only

for small wy as stated above.

Approximation (24) is obviously good for long times,
when EQq.(18) is dominated by small values @f,. How-
ever, even for short times, formul&21)—(24) are in good
agreement with the numerical solution of E43), for the

of the initial distance between steps. The maximum distané¢ is
=60.

initial conditions. The surface is prepared in such a way that
the steps do not touch each other. Thus there is no entropic
repulsion at the beginnindar from equilibrium. After some
time entropic repulsion sets in. Our model, in which step
annihilation is forbidden, shows this clearly through the
minimum of the distance between identical steps. Thus the
attractive interaction does not survive this entropic repulsion
after a certain time. For sufficiently long times all curves go
to the equilibrium value 1/2. Obviously for smaller values of
v, this happens later in time.

For N=60 the transient effect persists for longer times
than forN=32. This indicates that, for greathk the effect

discrete model, as shown by Fig. 3. This figure shows thatgould be more important, since there is more time available
even when the initial distance between steps coincides witfor the smaller width to become stable, if for instance, anni-
the equilibrium value, a minimum width is attained in the hilation of steps is allowed, and if this new factor could trap
transient state before the long time limit is reached. It isthe system into a metastable state. To verify this hypothesis,
worth mentioning that for long times the numerical solutionwhich is motivated by what is seen in simulations, a more

of the master equation and the results deduced fron{ZHyg.

realistic model for the periodic profile has to be used, in

do not converge exactly to the same value: the numericadrder to take into account the connection between steps of

solution goes to 1/2 1/N, and the results of E¢21) (for the
continuum limit, whereN>1) go to 1/2.

A comment is appropriate about the summationkoim
Eq. (21). In principle, the “master matrix” has onI\ ei-
genvaluesw, (only N/2 if odd values ofi/a are discardex
while Eq. (24) has an infinity of solutions. For largd the

opposite sign, and to allow the annihilation of these steps
when they become too close.

In the physical case, when there are many steps of the
same sign in the sloping parts of the profile rather than just
two steps, the effect will not vanish, as would be the case for
a regular array of steps of the same sign. The effect will

number of eigenvalues tends to infinity, and this discrepancgurvive due to the presence of steps of opposite sign at the

is not essential.

The results of calculations based on formu{@4) and
(24) are given on Fig. 4. The firdl/2 values ofw, have
been used in the summation dnin Eg. (21). We have
checked that the results do not change appreciably éi-
genvalues are usddf odd values ofl/a are not discarded

hills and valleys of the profildwhere the effect does not
exish. What has been observed in the simulation of Adam
et al. [23], with a (1+1)-dimensional, otherwise realistic,
model, is that the distance between steps of identical sign
decreases, so that the sloping parts become steeper. Of
course, fluctuations of the distance between steps have been

The rootsv, of the Bessel functions have been found usingobserved, but no step pairing, in contrast with the observa-

MATHEMATICA, and the other variables which dependn
v, Ng etc. been calculated as functionsugf. The time evo-
lution of the reduced average distari¢ét))/(Na) between
steps of identical sign is shown fbr= 32 and 60, for several

tion made by Kandel and Week82] in a very different
context(crystal growth.

Very recently, Israeli and Kand¢R2] considered what
happens in the evolution of a one-dimensional profile if an
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attractive interaction between steps of opposite sign exists
(this could be an elastic interaction or an effective attraction anz-1Gy D (N2—=1) = w P (N/2—1). (A8)
simulating the effect of step fluctuationsThe entropic re-

pulsion between identical neighbor steps was also consid- Relations(A6), (A7), and (A8), respectively, correspond

ered. Israeli and Kandel found, in a scaling scenario, thafs Egs.(13), (15), and(17) in the continuum limit.
pseudofacets form at the top and bottom of the profile in the |ntroducing the function

transient state, and that the step density is smaller near its

extrema, due to the faster annihilation process. Without that éza(x)q&k(x), (A9)
attractive interaction they found that the profile evolves with

cusps replacing the pseudofacets. Here the atomic distancedfe can write Eq(A6) as

taken into account, and pseudofacets atso appear in the

absence of a real attractive interaction. d2~. 2 d~ 2 ~ L=
—E+—a(X) =B+ —a'(X)E+ o H(X)E=0,
Sam a0 G EF e 0E e ()
APPENDIX A: EIGENVECTORS IN TERMS OF BESSEL (A10)
FUNCTIONS

o~ ~ where use has been made of definitié«), which implies
The probability P(l,t)=P(2na,t)=P,(t)=P,(t), that

the distance between two steps at timis |, satisfies the da(x) 2 )
master equatiori13). The quantity to be calculated i), a’'(X)= ax -5 (x). (A11)
=(2na);. Then
0y N/2 Introducing the variableg (x) defined by Eq.(23) and
?tz > 2nP,(t). (A1)  defining E(z(x))=E(x), formula(A10) can be written as
n=1
It will be assumed thaP,(t) do not change very much 22—E(2)+z-—E(2)+ (22— 1¥E(2)=0, (Al12)
whenn varies by 1. This is clearly reasonable for large val- dz dz
ues ofn, so a necessary condition for this “continuous ap-
proximation” to be valid is thalN must be large. wherev=2/3 andz=z.. This equation is a Bessel equation,
In this “continuum limit,” Eq. (13) reads and its general solution is
7 Bty = - Py A2 = ay X (2% )Ty N(2x+ )32
PO = — a0 — |, (A2) B0 =2y (2x+ DI 2 M(2X+0)
. . o
wherex varies continuously between 1 ah2, and _dkz_:/(2X+ O Iod M(2x+ )], (A13)
Y
a(X):a+(2X<'i)= m (A3) where
In the continuum limit, expressiofAl) reads )\k=1(ﬂ 1/2 a1
31y
O M pxyd A4
‘a L XP(x,Hdx, (A4) The derivative of Eq(A13) can easily be calculated be-
causel,(u)=dJ,(u)/du satisfies the relation
while expansion18) becomes
UJ;}(U): V‘]V(u)_ UJv+l(u): - VJV(U)J'_ UJV_l(U),
_ — oyt (A15)
P(GD=2 yebi(x)e X, (A5)
which implies, for anyn andr, that
where ¢ (x) and wy are defined by q
d d ﬁ[u”\ly()\ur)]z)\ruV“l“Jv,l()\ur) (A16)
dx a(X)&@((X) =—ogd(X)  (1<x<N/2)
(AG) and
. d
and the boundary conditions ﬁ[u”'\]_y()\u')]= oW o),
d
a1 S(1)=— or(1) (A7) (A17)
Using Eqgs.(A16) and (A17), with vr=1 andu=2x+/{,
and the derivative of Eq(A13) is found to be
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0| 32

7) (2x+ 0¥ N(2x+ 0¥
(A18)

1 (w2

_Edk(7> (2x+ )32y M(2x+ 0)¥2].

d
d—x¢k(X): 5%

Inserting Eqs(A13), (A3), and(A18) into Egs.(A7) and
(A8), one obtains

adyd M2+ O]+ did -y M(2+ 0¥

0| 12
7) 2+ )M M2+ )%

0| 2
_dk(7) 2+ Y23 N(2+ )7

(A19)
and
adys(vi) T A d_1/5(vy)
® 1/2
=—(N+{) "%y —k) J_o(vi)
wy 1/2
+(N+2)Y2dy | Jasvw.  (A20)

In Eq. (A20), N has been assumed largdt ¢).
APPENDIX B: APPROXIMATIONS FOR SMALL
EIGENVALUES

If w, is small,Jy3 and J,; are small in Eq.(A19). It
follows that

J_ad N(2+0)%7]
Jogd M2+ 0%

wy 1/2
_" 2 1/2
ST

dk/ak:

(B1)

SinceJ, (u)~u” for smallu, it follows thatd,/a,<<1. Thus,

Eqg. (A13) reduces to

1 1/2
¢k<x>=ak§)—;<2x+/:mz,3{§(%) <2x+§>3’2}.

(B2)
Neglectingd,, Eqg. (A20) reduces to
Uk
Jip(v) =~ N__i_g372/3(vk)- (B3)
Assuming
L] B4
Nz <L (B4)

Eq. (B3) reduces td;5(vy) =0, which is Eq.(24). It follows
from Eq. (26) that condition(B4) is equivalent to

PHYSICAL REVIEW B3 026104

<1. (B5)

APPENDIX C: ORTHOGONALITY OF THE
EIGENVECTORS

The functionsg, were defined in Sec. IV as eigenvectors
of a Hermitian matrix, and therefore must be orthogonal. The
orthogonality relation can be written for largéas

N/2

i (X) (X)) dX= Syr. - (Cy

In particular, the orthogonality betweeby(x) and ¢y (x)
implies

N/2

dr(x)dx=0. (C2)

It is of interest to check that formuld?2), valid for small
wy, satisfies these orthogonality relations. Using E44.6)
and(B2), relation(C2) reduces to

(N+ Y23 Ne(N+ )] = (2+ ) Y23 M2+ 0)¥2].
(C3

The left-hand side of Eq(C3) vanishes because of con-
dition (24), and the right hand side is small for small,.
Thus relation(C2) is approximately satisfied.

Relation(C1) reads

9 2 N2
Qg E)\k)\kr f dX(2X+§)2
1
X J_od M(2X+8) 323 pd N (2x+ )] = Sy,
(C4
which can alternatively be written as
27 3 )
7 (Nt O a@w (M)
1
Xfo rdrd_pa(rvd-oa(rog) = ok,  (CH

where r=[(2x+¢)/(N+¢)]¥? and N>7=1, while v, is
defined by Eq(22), which, together with Eq(24) and(A15),
implies

23 _p5(vi) + 301 I y(vi) =0. (Co

The Bessel function has the prope[84] that, if v, and
v are solutions of Eq(C6), they satisfy the relation

1 1
fo rer—2/3(rUk)J—2/3(rvk’):E[J—2/3(Uk)]25k,k’ :
(C7)

For k#k', Eq. (C5) follows from Eq.(C7). For k=k’,
insertion of Eq.(C7) into Eq. (C5) yields

026104-7



ANNA CHAME AND JACQUES VILLAIN

31/2
= (C8)
2N AN Yo
Using expansiorfA5), Eq. (A4) can be written as
| N/2—1 N/2
Q=2 > )’kefwktj X(X)dx. (C9
a k=0 1

Since all terms vanish at infinite time except the tédem
=0 which must go to Eq(2), i.e., toN/2 if N is large, Eq.
(C9) reads

<|>t N N/2—1

N/2
A yke_wktj 2x¢(x)dx.  (C10
a 2 {= 1

Now by using Eqs(C2) and (B2) the integral in expres-
sion (C10) above becomes

N/2 wy (N2
f 2x¢k(x)dx=—f (2x+ ¢)%ay
1 2yJ1

Wy

1/2
X J [3<—) (2x+ )% dx
—2/33 Y .

(C1y
Using definition(23) to change variables, one obtains
N/2 3 (z(x=N/2)
J 2xX g (x)dx= ak—J zJ_,4(z)dz, (C12
1 2 z(x=1)

which can be written, using EqA16), with r=\=1 and
v=1/3, as

=N e d
dz7 gzl % 2]

(C13

N/2 3
J 2x¢k(x)dx=—akJ
1 2 z(x=1)

If this is integrated by parts, it becomes

z(N/2)J1d 2(N/2) ]

N/2 3
f 2Xd(X)dX==a,
1 2

=2(1)Jd z(1)]
ZJ')\k(NJr 032

A2+ év)3/2

dzJ(z)|. (C14

3
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The first term between brackets vanishes because qREQ.
The second term is small. Thus

N/Z Uk
f 2X(X)dx= —akf dzJ4(z). (Cl1H
1 M2+ )%
Then, from Eq.(C10),
2—1
ay NN ka
= — — a eiwkt dZ Z).
a2 IZl KYk a2+ 03 J3(2)
(C19

Knowing P(x,0), the coefficientsy, can be obtained by
using Eq.(A5) and the orthogonality condition; then,

N/2
Y= fl dx¢P(x,0). (C19

If the initial condition isP(x,t=0)=8(x—X,), the coeffi-
cientswy, are given by

_ _ . Yk 3
')’k_¢k(xo)_ak2,y(2XO+g)J—Z/:Z[)\k(ZXO+§) 7,
(C18

where Eq.(B2) has been used.
Insertion of Eqs(C8) and(C18) into Eq.(C16) yields

Q) N S o
a "2 & 3,200
XJ,Z/;{)\k(ZXO‘Fg)s/z]ake_wktjUk 3/2dZJ1/3(Z)
A(2+9)
or
ey N NE! Jod M2+ O

S a2
a 2 kgl ( XO+§) 30&[\],2/3(7.)1()]2

X f “ dz34(2), (C19
M(2+0%2

which reduces to Eq21).
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